skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tsujimoto, Hitoshi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ticks are important vectors of pathogenic viruses, bacteria, and protozoans to humans, wildlife, and domestic animals. Due to their life cycles, ticks face significant challenges related to water homeostasis. When blood‐feeding, they must excrete water and ions, but when off‐host (for stretches lasting several months), they must conserve water to avoid desiccation. Aquaporins (AQPs), a family of membrane‐bound water channels, are key players in osmoregulation in many animals but remain poorly characterized in ticks. Here, we bioinformatically identified AQP‐like genes from the deer tickIxodes scapularisand used phylogenetic approaches to map the evolution of the aquaporin gene family in arthropods. Most arachnid AQP‐like sequences (including those ofI. scapularis) formed a monophyletic group clustered within aquaglycerolporins (GLPs) from bacteria to vertebrates. This gene family is absent from insects, revealing divergent evolutionary paths for AQPs in different hematophagous arthropods. Next, we sequenced the full‐length cDNA ofI. scapularisaquaporin 1 (IsAQP1) and expressed it heterologously inXenopusoocytes to functionally characterize its permeability to water and solutes. Additionally, we examinedIsAQP1expression across different life stages and adult female organs. We foundIsAQP1is an efficient water channel with high expression in salivary glands prior to feeding, suggesting it plays a role in osmoregulation before or during blood feeding. Its functional properties are unique: unlike most GLPs,IsAQP1has low glycerol permeability, and unlike most AQPs, it is insensitive to mercury. Together, our results suggestIsAQP1plays an important role in tick water balance physiology and that it may hold promise as a target of novel vector control efforts. 
    more » « less